Derivadas de funciones trascendentes
f(x)=sin(3x-1) d
dx
sinu = cosu du
dx
f'(x)= cos(3x-1)(3) f'(x)=3cos(3x-1)
_________________________________________________________________ f(x)= tan(3x)d
dx
tanu = sec2(u)du
dx
f'(x)=sec2(3x)(1
3 x2/3
)
f'(x)=sec2(3x)
3 x2/3
_________________________________________________________________ f(x)=sec(1-x-x3)d
dx
secu= secu tanu du
dx
f'(x)=sec(1-x-x3) tan(1-x-x3)(-1-3x2) f'(x)=(-1-3x2)sec(1-x-x3) tan(1-x-x3)
_________________________________________________________________ f(x)=(sin2x)(cos3x)(tan4x)uvd
dx
uv=ud
dx
v+vd
dx
u
d
dx
tanu = sec2(u)du
dx
d
dx
cos u=-sen u du
dx
d
dx
sinu = cosu du
dx
f'(x)=(sin2x)(cos3x)(sec24x(4))+(tan4x)( (sin2x)(-sin3x(3)) +( (cos2x (2))( cos3x) )f'(x)=4(sin2x)(cos3x)(sec24x)+(tan4x)( -3(sin2x)(sin3x) +( 2(cos2x )( cos3x) )
_________________________________________________________________ f(x) = arcsin(5x-2) d
dx
arcsinu=1
1-u2
du
dx
f'(x)=1
1-(5x-2)2
(5)
f'(x)=5
1-(5x-2)2
_________________________________________________________________ f(x)=arcsec(1
x2
)
1
x2
=x-2
d
dx
arcsecu=1
uu2-1
du
dx
f'(x)=1
1
x2
(1
x2
)2-1
(-2
x3
)
f'(x)=(1)(-2)
(1
x2
)((1
x2
)2-1
)(x3)
=-2
(x-2)(x3)((1
x2
)2-1
)
f'(x)=(1)(-2)
x((1
x2
)2-1
)
=-2
x((1
x2
)(1
x2
)-1
)
=-2
x((1
x4
)-1
)
_________________________________________________________________ f(x)=arccot(tanx3) sec2u-tan2u=1sec2u=1+tan2u d
dx
arccotu=-1
1+u2
du
dx
d
dx
tanu = sec2(u)du
dx
f'(x)=-1
1+(tanx3)2
sec2(x3)3x2
f'(x)=-3x2sec2(x3)
1+(tanx3)2
=-3x2sec2(x3)
1+tan2(x3)
=-3x2sec2(x3)
sec2(x3)
=-3x2
_________________________________________________________________ f(x)=log(x4-4x2)d
dx
logu=loge
u
du
dx
f'(x)=loge
x4-4x2
(4x3-8x)
f'(x)=loge (4x3-8x)
x4-4x2
f(x)=sin5x2
log2x2
d
dx
(u
v
)=vd
dx
u-ud
dx
v
v2
f'(x)=(log2x2)(cos5x2 (10x)) - ( (sin5x2) (loge
2x2
4x))
log22x2
_________________________________________________________________ f(x)=2x-2 d
dx
au=aulna du
dx
f'(x)=2x-2ln2 (1)=2x-2ln2
_________________________________________________________________ f(x)=(3x)2x d
dx
uv=vuv-1du
dx
+uv lnudu
dx
No lo ocupo
d
dx
lnu = 1
u
du
dx
=u'
u
ln32=2ln3 y=(3x)2x lny = ln(3x)2x lny = 2x ln(3x) y'
y
= (2) ln(3x) +(2x)(3
3x
)
y'
y
= 2ln(3x) +(2x)(1
x
)
y'
y
= 2ln(3x) +(2x
x
)
y'
y
= 2ln(3x) +2
y'
y
= 2ln(3x) +2
y'=(y) (2ln(3x) +2) y'=(3x)2x (2ln(3x) +2)
_________________________________________________________________ f(x)=(x2+x+1)sinx y=(x2+x+1)sinx ln y=ln (x2+x+1)sinx ln y=sinx ln (x2+x+1) y'
y
=(sinx) (ln (x2+x+1))
y'
y
=((cos x) (ln (x2+x+1)))+((sinx)(2x+1
x2+x+1
))
y'=(x2+x+1)sinx((cos x) (ln (x2+x+1))+(sinx)(2x+1
x2+x+1
))